Let $X$ be a discrete random variable with the following PMF \begin \nonumber P_X(x) = \left\< \begin 0.3 & \quad \text x=3\\ 0.2 & \quad \text x=5\\ 0.3 & \quad \text x=8\\ 0.2 & \quad \text x=10\\ 0 & \quad \text \end \right. \end Find and plot the CDF of $X$.
| $EX$ | $= \sum_ x_kP_X(x_k)$ | 
| $= 0 (0.1)+ 1(0.4)+2(0.3)+3(0.2)$ | |
| $=1.6$ | 
Let $X$ be a discrete random variable with PMF \begin \nonumber P_X(k) = \left\< \begin 0.2 & \quad \text k=0\\ 0.2 & \quad \text k=1\\ 0.3 & \quad \text k=2\\ 0.3 & \quad \text k=3\\ 0 & \quad \text \end \right. \end Define $Y=X(X-1)(X-2)$. Find the PMF of $Y$.
| $P_Y(0)$ | $=P(Y=0)=P\big( (X=0) \textrm < or >(X=1) \textrm < or >(X=2)\big)$ | 
| $=P_X(0)+P_X(1)+P_X(2)$ | |
| $=0.7$; | |
| $P_Y(6)$ | $= P(X=3)=0.3$ | 
Let $X \sim Geometric(p)$. Find $E\left[\frac\right]$.
| $E\left[\frac\right]$ | $=\sum_^ <\infty>\frac P_X(k)$ | 
| $=\sum_^ <\infty>\frac q^p$ | |
| $=\frac \sum_^ <\infty>\left(\frac\right)^$ | |
| $=\frac \frac<1-\frac>$ | |
| $=\frac $. | 
If $X \sim Hypergeometric(b,r,k)$, find $EX$.
| $EX_i$ | $=0 \cdot p(X_i=0)+ 1 \cdot P(X_i=1)$ | 
| $=\frac$. | 
In Example 3.14 we showed that if $X \sim Binomial(n,p)$, then $EX=np$. We found this by writing $X$ as the sum of $n$ $Bernoulli(p)$ random variables. Now, find $EX$ directly using $EX=\sum_ x_k P_X(x_k)$. Hint: Use $k =n $.
| $EX$ | $=\sum_^ k p^k q^$ | 
| $=\sum_^ k p^k q^$ | |
| $=\sum_^ n p^k q^$ | |
| $=np\sum_^ p^ q^$ | |
| $=np\sum_^ p^l q^$ | |
| $=np$. | 
| $P(X > 0)$ | $=P_X(1)+P_X(2)+P_X(3)+P_X(4)+\cdots$, | 
| $P(X > 1)$ | $=P_X(2)+P_X(3)+P_X(4)+\cdots$, | 
| $P(X > 2)$ | $=P_X(3)+P_X(4)+P_X(5)+\cdots$. | 
| $\sum_^ <\infty>P(X>k)$ | $= P(X>0)+P(X>1)+P(X>2)+. $ | 
| $=P_X(1)+2P_X(2)+3P_X(3)+4P_X(4)+. $ | |
| $=EX$. | 
If $X \sim Poisson(\lambda)$, find Var$(X)$.
| $E[X(X-1)]$ | $=\sum_^ <\infty>k(k-1)P_X(k)$ | 
| $=\sum_^ <\infty>k(k-1) e^ <-\lambda>\frac<\lambda^k>$ | |
| $=e^ <-\lambda>\sum_^ <\infty>\frac<\lambda^k>$ | |
| $=e^ <-\lambda>\lambda^2 \sum_^ <\infty>\frac<\lambda^ | |
| $=e^ <-\lambda>\lambda^2 e^<\lambda>$ | |
| $=\lambda^2$. | 
So, we have $\lambda^2=E[X(X-1)]=EX^2-EX=EX^2-\lambda$. Thus, $EX^2=\lambda^2+\lambda$ and we conclude
| $\textrm(X)$ | $=EX^2-(EX)^2$ | 
| $=\lambda^2+\lambda-\lambda^2$ | |
| $=\lambda$. | 
Let $X$ and $Y$ be two independent random variables. Suppose that we know Var$(2X-Y)=6$ and Var$(X+2Y)=9$. Find Var$(X)$ and Var$(Y)$.
The print version of the book is available on Amazon.
Practical uncertainty: Useful Ideas in Decision-Making, Risk, Randomness, & AI